Refine Your Search

Topic

Search Results

Standard

THRUST WASHERS—DESIGN AND APPLICATION

1995-02-01
HISTORICAL
J924_199502
This SAE Standard presents the basic size and tolerance information for the design and manufacture of thrust washers. In most cases, the standard employs nominal figures in both metric and inch-pound units and, therefore, does not necessarily provide exact equivalents.
Standard

Thrust Washers – Design and Application

2011-06-13
CURRENT
J924_201106
This SAE Standard presents the basic size and tolerance information for the design and manufacture of thrust washers. In most cases, the standard employs nominal figures in both metric and inch-pound units and, therefore, does not necessarily provide exact equivalents.
Standard

DIESEL ENGINE SMOKE MEASUREMENT

1995-02-24
HISTORICAL
J255_199502
Measurement of diesel smoke in an accurate and consistent manner has been a serious problem for engine and vehicle manufacturers, users, and agencies charged with enforcing smoke limits. Several instruments, based on different principles and using different scales, are commonly used. In addition to these, human observation and judgment are often used to relate smoke to a variety of standards. The purpose of this SAE Information Report is to provide an understanding of the nature of diesel smoke, how it can be measured, and how the various measurement methods can be correlated. Except for defining the various types of smoke, the report deals solely with the steady-state measurement of visible, black smoke emitted from diesel engines. For the benefit of those who wish to study various aspects of the subject in greater depth, a list of useful references is included in Section 2. This document is divided into the following sections:
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1988-06-01
HISTORICAL
J215_198806
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1980-01-01
HISTORICAL
J215_198001
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1970-11-01
HISTORICAL
J215_197011
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
HISTORICAL
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

Continuous Hydrocarbon Analysis of Diesel Emissions

2002-10-21
CURRENT
J215_200210
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented. This SAE Recommended Practice provides for the continuous measurement of the hydrocarbon concentration in diesel exhaust.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1991-04-01
HISTORICAL
J171_199104
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: a A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 15.6 to 28.9 °C (60 to 84 °F) b A 17.9 km (11.1 mile) drive on a chassis dynamometer c A 1 h hot soak immediately following the 17.9 km (11.1 mile) drive The method described in this document, commonly known as the SHED (Sealed Housing for Evaporative Determination) technique, employs an enclosure in which the vehicle is placed during the diurnal and hot soak phases of the test.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1970-09-01
HISTORICAL
J171_197009
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 hr soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F. 2 A 7 mile run on a chassis dynamometer. 3 A 1 hr hot soak immediately following the 7 mile run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170. SAE J170 employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1982-06-01
HISTORICAL
J171_198206
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle's tank is raised from 60-84°F (15.6-28.9°C). 2 An 11.1 mile (17.9 km) run on a chassis dynamometer. 3 A 1 h hot soak immediately following the 11.1 mile (17.9 km) run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170a (July, 1972). SAE J170a employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1977-09-01
HISTORICAL
J171A_197709
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F (15.6 to 28.9 C). 2 A 7.5 mile (12.1 km) run on a chassis dynamometer. 3 A 1 h hot soak immediately following the 7.5 mile (12.1 km) run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170a. SAE J170a employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
X